Upgrade auf Pro
Zurück zur Seite
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Lösungen
Integrale Rechner
Ableitung Rechner
Algebra Rechner
Matrix Rechner
Mehr...
Grafiken
Liniendiagramm
Exponentieller Graph
Quadratischer Graph
Sinusdiagramm
Mehr...
Rechner
BMI-Rechner
Zinseszins-Rechner
Prozentrechner
Beschleunigungsrechner
Mehr...
Geometrie
Satz des Pythagoras-Rechner
Kreis Fläche Rechner
Gleichschenkliges Dreieck Rechner
Dreiecke Rechner
Mehr...
Werkzeuge
Notizbuch
Gruppen
Spickzettel
Arbeitsblätter
Studienführer
Übungen
Lösung überprüfen
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgraden
Häufige Probleme
Themen
Voralgebra
Algebra
Wort-Probleme
Functions & Graphing
Geometrie
Trigonometrie
Vorkalkül
Rechnen
Statistik
Beliebte Rechnen-Probleme
derivative y=arcsin(x+1)
derivative
y
=
arcsin
(
x
+
1
)
integral of 2/3 x^{3/2}-9sin(x)
∫
2
3
x
3
2
−
9
sin
(
x
)
dx
(\partial)/(\partial x)(7xsin(y-z))
∂
∂
x
(
7
x
sin
(
y
−
z
)
)
limit as x approaches 8 of (sqrt(7+\sqrt[3]{x)}-3)/(x-8)
lim
x
→
8
(
√
7
+
3
√
x
−
3
x
−
8
)
integral of 3x^2-2y^2
∫
3
x
2
−
2
y
2
dx
integral of x/(1-2x)
∫
x
1
−
2
x
dx
limit as x approaches 1 of sqrt(3+f(x))
lim
x
→
1
(
√
3
+
f
(
x
)
)
integral of t^2e^{-4t}
∫
t
2
e
−
4
t
dt
derivative of (4x/(7x-2))
d
dx
(
4
x
7
x
−
2
)
inverselaplace 1/((2s+1)s)
inverselaplace
1
(
2
s
+
1
)
s
integral of x^2ln(9x)
∫
x
2
ln
(
9
x
)
dx
derivative of (tan^2(x)/(tan(x^2)))
d
dx
(
tan
2
(
x
)
tan
(
x
2
)
)
sqrt(x)(dy)/(dx)=e^{7y+sqrt(x)}
√
x
dy
dx
=
e
7
y
+
√
x
sum from n=1 to infinity of 5(-1/6)^{5n}
∑
n
=
1
∞
5
(
−
1
6
)
5
n
derivative f(x)=(2x^2-x-1)/(2x+2)
derivative
f
(
x
)
=
2
x
2
−
x
−
1
2
x
+
2
limit as x approaches 0+of x^{20x}
lim
x
→
0
+
(
x
2
0
x
)
derivative of 7x^4cot(x)
d
dx
(
7
x
4
cot
(
x
)
)
xydx-(1+x^2)dy=0
xydx
−
(
1
+
x
2
)
dy
=
0
x''
x
′
′
(dy)/(dx)+3y=40
dy
dx
+
3
y
=
4
0
derivative of sqrt(x)(2x+4)
d
dx
(
√
x
(
2
x
+
4
)
)
limit as x approaches 7 of (x+6)/(x+1)
lim
x
→
7
(
x
+
6
x
+
1
)
tangent (x^3+2x)^3,\at x=4
tangent
(
x
3
+
2
x
)
3
,
at
x
=
4
integral from 0 to 2 of x^6
∫
0
2
x
6
dx
integral of xcos(4pi)x^2
∫
x
cos
(
4
π
)
x
2
dx
derivative of (x^2+x+2/(2x))
d
dx
(
x
2
+
x
+
2
2
x
)
fläche y=2x^2,y=2x+6
area
y
=
2
x
2
,
y
=
2
x
+
6
derivative ln(x)
derivative
ln
(
x
)
derivative of (e^x-e^{-x}/5)
d
dx
(
e
x
−
e
−
x
5
)
(xdy)/(dx)=y+sqrt(x^2-y^2)
xdy
dx
=
y
+
√
x
2
−
y
2
integral from-1/4 to 1/4 of 1/(1-x^2)
∫
−
1
4
1
4
1
1
−
x
2
dx
laplacetransform-9t^2
laplacetransform
−
9
t
2
integral of (3x)/(1+x^2)
∫
3
x
1
+
x
2
dx
integral of (-2sqrt(x))
∫
(
−
2
√
x
)
dx
(\partial)/(\partial x)(x+y^3)
∂
∂
x
(
x
+
y
3
)
(\partial)/(\partial x)(2yx-3y+y^2)
∂
∂
x
(
2
yx
−
3
y
+
y
2
)
ye^{xy}dx+xe^{xy}dy=0
ye
xy
dx
+
xe
xy
dy
=
0
derivative of a/(bx^2)
d
dx
(
a
bx
2
)
derivative 2x
derivative
2
x
inverselaplace ((s-10))/((s^2-2s-3))
inverselaplace
(
s
−
1
0
)
(
s
2
−
2
s
−
3
)
implicit (dy)/(dx),x^6-5xy^3=9xy
implicit
dy
dx
,
x
6
−
5
xy
3
=
9
xy
limit as x approaches 0 of arctan(1/x)
lim
x
→
0
(
arctan
(
1
x
)
)
integral of (x^2+2)/(x^3(x+1)^3)
∫
x
2
+
2
x
3
(
x
+
1
)
3
dx
fläche 1/((sqrt(1-7x))),-6<x<0
area
1
(
√
1
−
7
x
)
,
−
6
<
x
<
0
(\partial)/(\partial x)(4x^{-x^2-y^2-z^2})
∂
∂
x
(
4
x
−
x
2
−
y
2
−
z
2
)
integral of 7.9t-16.6
∫
7
.
9
t
−
1
6
.
6
dt
derivative of 1/((1-2x^{3/2)})
d
dx
(
1
(
1
−
2
x
)
3
2
)
(\partial)/(\partial x)(x^{2/3}+y^{2/3})
∂
∂
x
(
x
2
3
+
y
2
3
)
integral of 1/(sqrt(64+x^2))
∫
1
√
6
4
+
x
2
dx
f(x)=xcos(x)
f
(
x
)
=
x
cos
(
x
)
derivative of ln(x+2x)
d
dx
(
ln
(
x
)
+
2
x
)
taylor 1/(1+x^2),0
taylor
1
1
+
x
2
,
0
integral from 0 to 1 of (1-x^7)^2
∫
0
1
(
1
−
x
7
)
2
dx
derivative x^3-2x^2-4x+6
derivative
x
3
−
2
x
2
−
4
x
+
6
y^{''}-2y^'=x+2e^x,y(0)=18,y^'(0)= 31/4
y
′
′
−
2
y
′
=
x
+
2
e
x
,
y
(
0
)
=
1
8
,
y
′
(
0
)
=
3
1
4
derivative of 2cos(x+3sin(x))
d
dx
(
2
cos
(
x
)
+
3
sin
(
x
)
)
inverselaplace (s+3)/(s^2+2s+2)
inverselaplace
s
+
3
s
2
+
2
s
+
2
tangent 5x^2+8x-8
tangent
5
x
2
+
8
x
−
8
d/(du)(sqrt(u))
d
du
(
√
u
)
derivative of (6x-1(5x-2)^{-1})
d
dx
(
(
6
x
−
1
)
(
5
x
−
2
)
−
1
)
derivative of 2(x-1^2)
d
dx
(
2
(
x
−
1
)
2
)
y^{''}+4y^'+5y=-10x+3e^{-x}
y
′
′
+
4
y
′
+
5
y
=
−
1
0
x
+
3
e
−
x
limit as x approaches 3 of sqrt(x-2)
lim
x
→
3
(
√
x
−
2
)
integral of (sec^2(x))/x
∫
sec
2
(
x
)
x
dx
derivative f(x)=(x+5)/(x-5)
derivative
f
(
x
)
=
x
+
5
x
−
5
limit as x approaches-2 of x^2-4/(x+2)
lim
x
→
−
2
(
x
2
−
4
x
+
2
)
fläche y=cos(x),y=0.5,0<= x<= pi
area
y
=
cos
(
x
)
,
y
=
0
.
5
,
0
≤
x
≤
π
1296y^{''}+1368y^'+361y=0
1
2
9
6
y
′
′
+
1
3
6
8
y
′
+
3
6
1
y
=
0
x(dy)/(dx)=y+(x^2-2)^2
x
dy
dx
=
y
+
(
x
2
−
2
)
2
integral of sin^2(pix)cos^5(pix)
∫
sin
2
(
π
x
)
cos
5
(
π
x
)
dx
derivative \sqrt[3]{6+2x+x^3}
derivative
3
√
6
+
2
x
+
x
3
derivative of csc^2(1-2x)
d
dx
(
csc
2
(
1
−
2
x
)
)
limit as x approaches-1 of 3x^4-6x+1
lim
x
→
−
1
(
3
x
4
−
6
x
+
1
)
integral of 3x^2+2x
∫
3
x
2
+
2
xdx
limit as x approaches 2 of x^3-5x
lim
x
→
2
(
x
3
−
5
x
)
limit as x approaches-6+of sqrt(x+6)
lim
x
→
−
6
+
(
√
x
+
6
)
derivative of 3\sqrt[3]{x^2}-2x
d
dx
(
3
3
√
x
2
−
2
x
)
integral of 1/(sqrt(cos(x)+cos^2(x)))
∫
1
√
cos
(
x
)
+
cos
2
(
x
)
dx
(\partial)/(\partial z)(ln(1+xy)-z)
∂
∂
z
(
ln
(
1
+
xy
)
−
z
)
derivative f(x)=sqrt(x+8)
derivative
f
(
x
)
=
√
x
+
8
integral of tln(1+t)
∫
t
ln
(
1
+
t
)
dt
integral from-8 to 0 of (y/8+sqrt(y+9))
∫
−
8
0
(
y
8
+
√
y
+
9
)
dy
limit as x approaches infinity of x+9
lim
x
→
∞
(
x
+
9
)
integral of 1/(x^2+3x+3)
∫
1
x
2
+
3
x
+
3
dx
y''(x)-3y'(x)+2y= 1/(1+e^{-x)}
y
′
′
(
x
)
−
3
y
′
(
x
)
+
2
y
=
1
1
+
e
−
x
limit as x approaches 0 of-arcsin(x)
lim
x
→
0
(
−
arcsin
(
x
)
)
derivative of 5e^x+2/(\sqrt[3]{x})
d
dx
(
5
e
x
+
2
3
√
x
)
integral from 0 to 1 of 9cos((pit)/2)
∫
0
1
9
cos
(
π
t
2
)
dt
integral of 1/(sqrt(x^2+36))
∫
1
√
x
2
+
3
6
dx
derivative ln(3)
derivative
ln
(
3
)
derivative of ln(1/(1-x))
d
dx
(
ln
(
1
1
−
x
)
)
fläche y=4x^2,y=x^2+6
area
y
=
4
x
2
,
y
=
x
2
+
6
limit as x approaches 7 of x+2
lim
x
→
7
(
x
+
2
)
integral of xe^xln(x-1)
∫
xe
x
ln
(
x
−
1
)
dx
integral of (sin^5(ln(x)))/x
∫
sin
5
(
ln
(
x
)
)
x
dx
limit as x approaches 0 of (sqrt(5+x)-sqrt(5))/(2x)
lim
x
→
0
(
√
5
+
x
−
√
5
2
x
)
derivative f(t)=e^{7tsin(2t)}
derivative
f
(
t
)
=
e
7
t
sin
(
2
t
)
tangent f(x)=x(27x^{-2}+2),\at x=-3
tangent
f
(
x
)
=
x
(
2
7
x
−
2
+
2
)
,
at
x
=
−
3
(\partial)/(\partial x)((x-1)/(x+1))
∂
∂
x
(
x
−
1
x
+
1
)
integral from 0 to infinity of 1/(e^x-1)
∫
0
∞
1
e
x
−
1
dx
1
2
3
4
5
6
7
..
1824