Upgrade auf Pro
Zurück zur Seite
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Lösungen
Integrale Rechner
Ableitung Rechner
Algebra Rechner
Matrix Rechner
Mehr...
Grafiken
Liniendiagramm
Exponentieller Graph
Quadratischer Graph
Sinusdiagramm
Mehr...
Rechner
BMI-Rechner
Zinseszins-Rechner
Prozentrechner
Beschleunigungsrechner
Mehr...
Geometrie
Satz des Pythagoras-Rechner
Kreis Fläche Rechner
Gleichschenkliges Dreieck Rechner
Dreiecke Rechner
Mehr...
Werkzeuge
Notizbuch
Gruppen
Spickzettel
Arbeitsblätter
Studienführer
Übungen
Lösung überprüfen
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgraden
Häufige Probleme
Themen
Voralgebra
Algebra
Wort-Probleme
Functions & Graphing
Geometrie
Trigonometrie
Vorkalkül
Rechnen
Statistik
Beliebte Rechnen-Probleme
derivative x=4t^2-3t+11
derivative
x
=
4
t
2
−
3
t
+
1
1
derivative of sin^2(x+sin(x))
d
dx
(
sin
2
(
x
)
+
sin
(
x
)
)
derivative 4cos(t)
derivative
4
cos
(
t
)
fläche x=4y^2,x=2+2y^2
area
x
=
4
y
2
,
x
=
2
+
2
y
2
(\partial)/(\partial x)(4x^2+xy+3y^2-8)
∂
∂
x
(
4
x
2
+
xy
+
3
y
2
−
8
)
integral of sin(x)sec^2(cos(x))
∫
sin
(
x
)
sec
2
(
cos
(
x
)
)
dx
tangent f(x)=2x^2,\at x=5
tangent
f
(
x
)
=
2
x
2
,
at
x
=
5
integral of 7cos^2(x)sin(2x)
∫
7
cos
2
(
x
)
sin
(
2
x
)
dx
integral of t^2cos(nt)
∫
t
2
cos
(
nt
)
dt
integral of (-x)/x
∫
−
x
x
dx
limit as s approaches 0 of s*k/(s*(s/5+1)*(\frac{s){50}+1)}
lim
s
→
0
(
s
·
k
s
·
(
s
5
+
1
)
·
(
s
5
0
+
1
)
)
(\partial)/(\partial x)(x^3y^5+9x^5y)
∂
∂
x
(
x
3
y
5
+
9
x
5
y
)
integral of 1/9 (4-x^2)
∫
1
9
(
4
−
x
2
)
dx
fläche y=x^3-x^2-6x,x
area
y
=
x
3
−
x
2
−
6
x
,
x
(\partial)/(\partial x)(y^5sin(5x))
∂
∂
x
(
y
5
sin
(
5
x
)
)
derivative (2x^4+3x^2-1)/(x^2)
derivative
2
x
4
+
3
x
2
−
1
x
2
derivative of x^4(x-3^3)
d
dx
(
x
4
(
x
−
3
)
3
)
integral of 8x^5e^{5x^6}
∫
8
x
5
e
5
x
6
dx
(d^2y)/(dx^2)-2(dy)/(dx)+y=0
d
2
y
dx
2
−
2
dy
dx
+
y
=
0
fläche y=9ln(5x),y=11,[2,4]
area
y
=
9
ln
(
5
x
)
,
y
=
1
1
,
[
2
,
4
]
integral of sin^2(x)
∫
sin
2
(
x
)
dx
derivative of x^{1/4}y^{3/4}
d
dx
(
x
1
4
y
3
4
)
derivative (x^4+7x^2-9)^5
derivative
(
x
4
+
7
x
2
−
9
)
5
integral of ((x+1)/(sqrt(x-1)))
∫
(
x
+
1
√
x
−
1
)
dx
tangent f(x)=e^x,\at x=ln(13)
tangent
f
(
x
)
=
e
x
,
at
x
=
ln
(
1
3
)
tangent f(x)=e^x(8+3x+5x^2),\at x=0
tangent
f
(
x
)
=
e
x
(
8
+
3
x
+
5
x
2
)
,
at
x
=
0
derivative of x^3e^{-4x}
d
dx
(
x
3
e
−
4
x
)
(dy)/(dx)+y-4cos(x)=0
dy
dx
+
y
−
4
cos
(
x
)
=
0
integral from 0 to 5 of 1/(x^{17/18)}
∫
0
5
1
x
1
7
1
8
dx
integral of ve^{uv}
∫
ve
uv
du
derivative f(x)=sqrt((5-2x)(3x-1)^3)
derivative
f
(
x
)
=
√
(
5
−
2
x
)
(
3
x
−
1
)
3
integral of (x+3)/(3x^2-6x+8)
∫
x
+
3
3
x
2
−
6
x
+
8
dx
(d^2)/(dx^2)(4x\sqrt[3]{x})
d
2
dx
2
(
4
x
3
√
x
)
d/(dt)((2t)/(4+t^2))
d
dt
(
2
t
4
+
t
2
)
integral from 1 to 3 of (x^2+2x-4)
∫
1
3
(
x
2
+
2
x
−
4
)
dx
sum from n=1 to infinity of (5^n)/(3^n)
∑
n
=
1
∞
5
n
3
n
integral of 1/((x^2+y^2)^{3/2)}
∫
1
(
x
2
+
y
2
)
3
2
dx
3y^{''}-24y^'+36y=6sin(2x)
3
y
′
′
−
2
4
y
′
+
3
6
y
=
6
sin
(
2
x
)
derivative of 1/(sqrt(1+x^8))
d
dx
(
1
√
1
+
x
8
)
integral of 6e^{-0.5x}
∫
6
e
−
0
.
5
x
dx
(\partial)/(\partial x)(ln(5x^2-2y^2))
∂
∂
x
(
ln
(
5
x
2
−
2
y
2
)
)
integral from 1 to 3 of 2/(4+(x-1)^2)
∫
1
3
2
4
+
(
x
−
1
)
2
dx
y^'=(2y)/x
y
′
=
2
y
x
limit as x approaches 0 of (|x^2|)/x
lim
x
→
0
(
|
x
2
|
x
)
derivative of 2sec(cos(x)+2tan(2x))
d
dx
(
2
sec
(
cos
(
x
)
)
+
2
tan
(
2
x
)
)
limit as x approaches 5 of (x^2+kx-20)/(x-5)
lim
x
→
5
(
x
2
+
kx
−
2
0
x
−
5
)
steigungintercept (1,128),(4,161)
slopeintercept
(
1
,
1
2
8
)
,
(
4
,
1
6
1
)
derivative of ln(-1/x)
d
dx
(
ln
(
−
1
x
)
)
y^'=0.0875-(7y)/(2000),y(0)=50
y
′
=
0
.
0
8
7
5
−
7
y
2
0
0
0
,
y
(
0
)
=
5
0
tangent f(x)=((3x+5))/(1+x),\at x=1
tangent
f
(
x
)
=
(
3
x
+
5
)
1
+
x
,
at
x
=
1
derivative of 3x^2-6x-8
d
dx
(
3
x
2
−
6
x
−
8
)
integral of (e^x)/(x-1)
∫
e
x
x
−
1
dx
limit as x approaches 0 of ln(1-5x)
lim
x
→
0
(
ln
(
1
−
5
x
)
)
xy^{''}-y^'+y^'=0
xy
′
′
−
y
′
+
y
′
=
0
derivative of (1+x-4sqrt(x)/x)
d
dx
(
1
+
x
−
4
√
x
x
)
derivative y=ln(3x^5)
derivative
y
=
ln
(
3
x
5
)
(dy)/(dx)+2y=2e^x
dy
dx
+
2
y
=
2
e
x
derivative of x^2sqrt(10x-3)
d
dx
(
x
2
√
1
0
x
−
3
)
3y^{''}+17y^'+10y=0
3
y
′
′
+
1
7
y
′
+
1
0
y
=
0
derivative of mx^{m-2}(m-1)
d
dx
(
mx
m
−
2
(
m
−
1
)
)
fläche y=e^x,y=e^{-3x},x=ln(6)
area
y
=
e
x
,
y
=
e
−
3
x
,
x
=
ln
(
6
)
(dy)/(dt)=t^2+13t^2y
dy
dt
=
t
2
+
1
3
t
2
y
integral of (e^x+xcos(y))
∫
(
e
x
+
x
cos
(
y
)
)
dy
integral from 3 to 6 of x/(x^2+4x+13)
∫
3
6
x
x
2
+
4
x
+
1
3
dx
integral of (x^4)/(sqrt(x^{10)-1)}
∫
x
4
√
x
1
0
−
1
dx
derivative f(x)= 7/(sqrt(x-6))
derivative
f
(
x
)
=
7
√
x
−
6
wurzeln von e^{kx}
roots
e
kx
(\partial)/(\partial x)(2x^2+4y+1)
∂
∂
x
(
2
x
2
+
4
y
+
1
)
f(x)= 1/2 ln(x)
f
(
x
)
=
1
2
ln
(
x
)
integral of (3x-x^3+1)/(x^4)
∫
3
x
−
x
3
+
1
x
4
dx
limit as x approaches 10 of ln(100-x^2)
lim
x
→
1
0
(
ln
(
1
0
0
−
x
2
)
)
derivative x^2+1
derivative
x
2
+
1
limit as x approaches 0-of (sin(2x))/x
lim
x
→
0
−
(
sin
(
2
x
)
x
)
integral of (x^3-3x^2+5x-3)/(x-1)
∫
x
3
−
3
x
2
+
5
x
−
3
x
−
1
dx
fläche y=3x-x^2,y=-5x
area
y
=
3
x
−
x
2
,
y
=
−
5
x
tangent f(x)=sqrt(3x+1),\at x=5
tangent
f
(
x
)
=
√
3
x
+
1
,
at
x
=
5
derivative of 2e^{6x}
d
dx
(
2
e
6
x
)
derivative f(x)=\sqrt[5]{x^3-3x}
derivative
f
(
x
)
=
5
√
x
3
−
3
x
integral of xsqrt(1+x^4)
∫
x
√
1
+
x
4
dx
derivative of sin^2(x-3y)
d
dx
(
sin
2
(
x
−
3
y
)
)
integral of e^xsqrt(3-e^x)
∫
e
x
√
3
−
e
x
dx
integral of 3(x-1)y^3e^{y(1-x)}
∫
3
(
x
−
1
)
y
3
e
y
(
1
−
x
)
dx
integral of+e^{-0.1x}
∫
+
e
−
0
.
1
x
dx
limit as x approaches 1 of ln(x^{1/2})
lim
x
→
1
(
ln
(
x
1
2
)
)
inverslaplace 1/(s^3+5s)
inverselaplace
1
s
3
+
5
s
inverslaplace 1/(1+sa)
inverselaplace
1
1
+
sa
derivative of f(x)=8^{(x^2+4x)}
d
dx
f
(
x
)
=
8
(
x
2
+
4
x
)
(dy)/(dx)=e^{2x+3y},y(0)=0
dy
dx
=
e
2
x
+
3
y
,
y
(
0
)
=
0
integral from 6 to infinity of xe^{-2x}
∫
6
∞
xe
−
2
x
dx
integral of-5cos(x)
∫
−
5
cos
(
x
)
dx
y^{''}-8y^'+10y=0
y
′
′
−
8
y
′
+
1
0
y
=
0
integral of 8sec^2(x)
∫
8
sec
2
(
x
)
dx
limit as x approaches 3 of f(x)(g(x))
lim
x
→
3
(
f
(
x
)
(
g
(
x
)
)
)
dy=(y-1)^2dx
dy
=
(
y
−
1
)
2
dx
limit as x approaches 2 of (sqrt(x^2-4x)-2x)/(2x+5)
lim
x
→
2
(
√
x
2
−
4
x
−
2
x
2
x
+
5
)
y^'-y^2+0.5-20y=0
y
′
−
y
2
+
0
.
5
−
2
0
y
=
0
derivative f(x)=3x^4-65x^3
derivative
f
(
x
)
=
3
x
4
−
6
5
x
3
x^2dx+2ydy=0
x
2
dx
+
2
ydy
=
0
inverslaplace s/(s^2+6s+34)
inverselaplace
s
s
2
+
6
s
+
3
4
(\partial)/(\partial y)(((x+y))/(x-y))
∂
∂
y
(
(
x
+
y
)
x
−
y
)
1
..
441
442
443
444
445
..
2459