Lösung
Lösung
+1
Grad
Schritte zur Lösung
Umschreiben mit Hilfe von Trigonometrie-Identitäten
Hyperbolische Identität anwenden:
Hyperbolische Identität anwenden:
Wende Exponentenregel an
Wende Exponentenregel an:
Schreibe die Gleichung um mit
Löse
Fasse zusammen
Multipliziere mit dem kleinsten gemeinsamen Multiplikator
Finde das kleinste gemeinsame Vielfache von
kleinstes gemeinsames Vielfaches (kgV)
Finde einen mathematischen Ausdruck, der aus Faktoren besteht, die entweder in oder auftauchen.
Multipliziere mit dem kleinsten gemeinsamen Multiplikator=
Vereinfache
Vereinfache
Multipliziere die Zahlen:
Vereinfache
Multipliziere Brüche:
Streiche die gemeinsamen Faktoren:
Streiche die gemeinsamen Faktoren:
Vereinfache
Multipliziere Brüche:
Streiche die gemeinsamen Faktoren:
Löse
Schreibe um:
Multipliziere aus
Wende das Distributivgesetz an:
Vereinfache
Wende Exponentenregel an:
Addiere die Zahlen:
Multipliziere die Zahlen:
Schreibe um:
Wende Formel für perfekte quadratische Gleichungen an:
Vereinfache
Wende Regel an
Wende Exponentenregel an:
Multipliziere die Zahlen:
Multipliziere die Zahlen:
Setze Klammern
Vereinfache
Multipliziere die Zahlen:
Multipliziere die Zahlen:
Tausche die Seiten
Verschiebe auf die linke Seite
Füge zu beiden Seiten hinzu
Vereinfache
Verschiebe auf die linke Seite
Subtrahiere von beiden Seiten
Vereinfache
Verschiebe auf die linke Seite
Subtrahiere von beiden Seiten
Vereinfache
Faktorisiere
Wende den rationalen Nullstellentest an
Die Teiler von Die Teiler von
Deshalb, überprüfe die folgenden rationalen Zahlen:
ist eine Wurzel des Ausdrucks, deshalb klammere aus
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Faktorisiere
Wende den rationalen Nullstellentest an
Die Teiler von Die Teiler von
Deshalb, überprüfe die folgenden rationalen Zahlen:
ist eine Wurzel des Ausdrucks, deshalb klammere aus
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Dividiere
Dividiere die Hauptkoeffizienten des Zählers
und des Teilers
Multipliziere mit Substrahiere von , um einen neuen Restbetrag zu erhalten
Deshalb
Anwendung des Nullfaktorprinzips: Wenn dann oder
Löse
Verschiebe auf die rechte Seite
Füge zu beiden Seiten hinzu
Vereinfache
Löse
Verschiebe auf die rechte Seite
Subtrahiere von beiden Seiten
Vereinfache
Teile beide Seiten durch
Teile beide Seiten durch
Vereinfache
Löse
Löse mit der quadratischen Formel
Quadratische Formel für Gliechungen:
Für
Wende Regel an
Wende Exponentenregel an: wenn gerade ist
Multipliziere die Zahlen:
Addiere die Zahlen:
Primfaktorzerlegung von
ist durch teilbar
ist durch teilbar
ist eine Primzahl, deshalb ist keine weitere Faktorisierung möglich.
Wende Exponentenregel an:
Wende Radikal Regel an:
Wende Radikal Regel an:
Trenne die Lösungen
Wende Regel an
Multipliziere die Zahlen:
Faktorisiere
Schreibe um
Klammere gleiche Terme aus
Teile die Zahlen:
Wende Regel an
Multipliziere die Zahlen:
Faktorisiere
Schreibe um
Klammere gleiche Terme aus
Teile die Zahlen:
Die Lösungen für die quadratische Gleichung sind:
Die Lösungen sind
Überprüfe die Lösungen
Bestimme unbestimmte (Singularitäts-)Punkte:
Nimm den/die Nenner von und vergleiche mit Null
Nimm den/die Nenner von und vergleiche mit Null
Die folgenden Punkte sind unbestimmt
Kombine die undefinierten Punkte mit den Lösungen:
Setze löse für
Löse
Wende Exponentenregel an
Wenn , dann
Wende die log Regel an:
Löse Keine Lösung für
darf nicht null oder negativ sein
Löse
Wende Exponentenregel an
Wenn , dann
Wende die log Regel an:
Löse Keine Lösung für
darf nicht null oder negativ sein