|
||||||||||||||||||||||||||||||||||
| ▭\:\longdivision{▭} | \times \twostack{▭}{▭} | + \twostack{▭}{▭} | - \twostack{▭}{▭} | \left( | \right) | \times | \square\frac{\square}{\square} |
|
||||||||||||||||||||||||||||||||||
| - \twostack{▭}{▭} | \lt | 7 | 8 | 9 | \div | AC |
| + \twostack{▭}{▭} | \gt | 4 | 5 | 6 | \times | \square\frac{\square}{\square} |
| \times \twostack{▭}{▭} | \left( | 1 | 2 | 3 | - | x |
| ▭\:\longdivision{▭} | \right) | . | 0 | = | + | y |

(k^(2)-36)/(k^(2)-16k^60) / (k^(2)-12k^36)/(k^(2)-6k) ⋅ (6k-60)/(k^(2) 6k)
de
Bitte gib eine Nachricht ein
Nachricht erhalten. Vielen Dank für dein Feedback.